Recursive polynomial remainder sequence and its subresultants
نویسندگان
چکیده
منابع مشابه
Recursive Polynomial Remainder Sequence and its Subresultants
We introduce concepts of “recursive polynomial remainder sequence (PRS)” and “recursive subresultant,” along with investigation of their properties. A recursive PRS is defined as, if there exists the GCD (greatest common divisor) of initial polynomials, a sequence of PRSs calculated “recursively” for the GCD and its derivative until a constant is derived, and recursive subresultants are defined...
متن کاملSubresultants in Recursive Polynomial Remainder Sequence
We introduce concepts of “recursive polynomial remainder sequence (PRS)” and “recursive subresultant,” and investigate their properties. In calculating PRS, if there exists the GCD (greatest common divisor) of initial polynomials, we calculate “recursively” with new PRS for the GCD and its derivative, until a constant is derived. We call such a PRS a recursive PRS. We define recursive subresult...
متن کاملRecursive Polynomial Remainder Sequence and the Nested Subresultants
Abstract. We give two new expressions of subresultants, nested subresultant and reduced nested subresultant, for the recursive polynomial remainder sequence (PRS) which has been introduced by the author. The reduced nested subresultant reduces the size of the subresultant matrix drastically compared with the recursive subresultant proposed by the authors before, hence it is much more useful for...
متن کاملOn Polynomial Remainder Codes
Polynomial remainder codes are a large class of codes derived from the Chinese remainder theorem that includes Reed-Solomon codes as a special case. In this paper, we revisit these codes and study them more carefully than in previous work. We explicitly allow the code symbols to be polynomials of different degrees, which leads to two different notions of weight and distance. Algebraic decoding ...
متن کاملRecursive sequences and polynomial congruences
We consider the periodicity of recursive sequences defined by linear homogeneous recurrence relations of arbitrary order, when they are reduced modulo a positive integer m. We show that the period of such a sequence with characteristic polynomial f can be expressed in terms of the order of ω = x + f as a unit in the quotient ring ޚ m [ω] = ޚ m [x]/ f. When m = p is prime, this order can be ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2008
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2007.12.023